Algorithm Design and Analysis

Who am I? (for those of you who don't know me already)

- Dr. Barry Wittman
- Not Dr. Barry Whitman
- Education:
 - PhD and MS in Computer Science, Purdue University
 - BS in Computer Science, Morehouse College
- Hobbies:
 - Reading, writing
 - Enjoying ethnic cuisine
 - DJing
 - Lockpicking
 - Stand-up comedy

How can you reach me?

• E-mail: wittman1@otterbein.edu Office: Point 105 Phone: (614) 823-2944 • Office hours: MWF 10:15 – 11:15 a.m., **MWF** 2:00 – 4:00 p.m., **TR** 10:00 – 11:15 a.m., Т 2:00 – 4:00 p.m., R 2:00 – 5:00 p.m., and by appointment

Website:

http://faculty.otterbein.edu/wittman1/

Why are we here?

- What's the purpose of this class?
- What do you want to get out of it?
- Do you want to be here?

Course Overview

Textbook

- Jon Kleinberg and Éva Tardos
- Algorithm Design
- Ist Edition, 2005, Pearson
- ISBN-10: 0321295358
- ISBN-13: 978-0321295354

You have to read the book

- You are expected to read the material before class
- If you're not prepared, you will be asked to leave
 - You will forfeit the opportunity to take quizzes
 - Much more importantly, you will forfeit the education you have paid around **\$100 per class meeting** to get

This is a mostly a math class

- The analysis and design of algorithms can happen independent of a computer
- Will you use the stuff in this class on a daily basis as a programmer?
 - No ...
- But the stuff we talk about will be essential for interviews at Google, Amazon, etc.
- If you want to go to grad school, you'll need to know this stuff
- Maybe, just maybe, you'll get better at solving problems

Topics to be covered

- Algorithm analysis (Big Oh, Big Theta, and Big Omega)
- Graph algorithms
- Greedy algorithms
- Divide and conquer
- Dynamic programming
- Network flow
- NP-completeness
- Approximation algorithms

More information

For more information, visit the webpage:

http://faculty.otterbein.edu/wittman1/comp4500

The webpage will contain:

- The most current schedule
- Notes available for download
- Reminders about exams and homework
- Syllabus
- Detailed policies and guidelines

Homework

Seven homework assignments

- 32% of your grade will be seven equally weighted homework assignments
- Each will focus on a different set of topics from the course
- All homework is to be done individually
- I am available for assistance during office hours and through e-mail

Turning in homework

- Homework assignments must be turned in by uploading them to Blackboard before the deadline
- Late homework will not be accepted
- Paper copies of homework will not be accepted
- Each homework done in LaTeX will earn 0.75% extra credit toward the final semester grade
- Doing every homework in LaTeX will raise your final grade by 5.25% (about half a letter grade)

Three-Sentence Summaries

Three-sentence summaries

- 3% of your grade will be short summaries of the reading
- Each student will give two to three of these summaries at any time during the semester, without any warning
- Each summary should be exactly three sentences long
- You should write this summary before class, while doing the reading

Pop Quizzes

- 5% of your grade will be pop quizzes
- These quizzes will be based on material covered in the previous one or two lectures
- They will be graded leniently
- They are useful for these reasons:
 - 1. Informing me of your understanding
 - 2. Feedback to you about your understanding
 - 3. Easy points for you
 - 4. Attendance

Exams

- There will be three equally weighted in-class exams totaling 45% of your final grade
 - Exam 1: 2/05/2024
 - Exam 2: 2/28/2024
 - Exam 3: 4/01/2024
- The final exam will be worth 15% of your grade
 - Final: 8:00 10:00 a.m.

4/24/2024

Course Schedule

Tentative schedule

Week	Starting	Topics	Chapters	Notes
1	01/08/24	Introduction	1 and 2	
2	01/15/24	Algorithm Analysis	2	MLK Day
3	01/22/24	Graphs	3	
4	01/29/24	Greedy Algorithms I	4	
5	02/05/24	Greedy Algorithms II	4	Exam 1
6	02/12/24	Divide and Conquer I	5	
7	02/19/24	Divide and Conquer II	5 and notes	
8	02/26/24	Dynamic Programming I	6	Exam 2
	03/04/24	Spring Break		
9	03/11/24	Dynamic Programming II	6	
10	03/18/24	Network Flow	7	
11	03/25/24	NP-completeness	8	Good Friday
12	04/01/24	More NP-completeness	8	Exam 3
13	04/08/24	Approximation Algorithms	11	
14	04/15/24	Review	All and notes	

Policies

Grading breakdown

Grading scale

Α	93-100	B-	80-82	D+	67-69
A-	90-92	C+	77-79	D	60-66
B+	87-89	С	73-76	F	60-62
В	83-86	C-	70-72		

Academic dishonesty

- Don't cheat
- First offense:
 - I will try to give you a zero for the assignment, then lower your final letter grade for the course by one full grade

Second offense:

- I will try to fail you for the course and try to kick you out of Otterbein
- Refer to the syllabus for the school's policy
- Ask me if you have questions or concerns

Disability Services

- The University has a continuing commitment to providing access and reasonable accommodations for students with disabilities, including mental health diagnoses and chronic or temporary medical conditions
- Students who may need accommodations or would like referrals to explore a potential diagnosis are urged to contact Disability Services (DS) as soon as possible
- DS will facilitate accommodations and assist the instructor in minimizing barriers to provide an accessible educational experience
- Please contact DS at <u>DisabilityServices@otterbein.edu</u>
- More info can also be found at <u>http://www.otterbein.edu/ods</u>
- Your instructor is happy to discuss accommodations privately with you as well

Logical warmup

- Consider three boxes A, B, and C
- One contains gold, but the other two are empty
- Each box has a message printed on it
- Two of the messages are lies, and one is telling the truth
- Which box has the gold?

Big Theta of Code

Practical Big Theta

- Let's look at a number of loop based samples of Java and estimate their Big Theta bounds
- We might need the following useful relationships
- Arithmetic series: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ is $\theta(n^2)$
- Geometric series: $\sum_{i=0}^{n-1} r^i = \frac{1-r^n}{1-r}$
 - and the bound depends on r
- Harmonic series: $\sum_{i=1}^{n} \frac{1}{i}$ is $\theta(\log n)$

Far too easy

What's the Big Theta bound if n is the length of values?

public static double average(int[] values) {
 double sum = 0.0;
 for(int i = 0; i < values.length; ++i)
 sum += values[i];
 return sum / values.length;</pre>

A little tougher

What's the Big Theta bound if n is the length of people?

```
public static void meeting(Person[] people) {
    for(int i = 0; i < people.length; ++i)
        for(int j = i + 1; j < people.length; ++j)
            people[i].shakeHands(people[j]);
}</pre>
```

Watch your step

What's the Big Theta bound if n is n?

```
public static void powers(int n) {
    int i = 1;
    while(i <= n) {
        System.out.print(i);
        i *= 2;
    }
</pre>
```

Keep watching your step

What's the Big Theta bound if n is n?

for(int i = 1; i < n; ++i) for(int j = 0; j < n; j += i) System.out.println("*");</pre>

Steps on steps

What's the Big Theta bound if n is n?

for(int i = 1; i < n; i *= 2) for(int j = 1; j < n; j *= 3) System.out.println("#");</pre>

Steps on steps on steps

What's the Big Theta bound if n is n?

int counter = 1; for(int i = 1; i <= n; ++i) { for(int j = 0; j < counter; ++j) System.out.println("\$"); counter *= 2;

Switch it up

What's the Big Theta bound if n is n?

int counter = 1; for(int i = 1; i <= n; ++i) { for(int j = 0; j < n/counter; ++j) System.out.println("\$"); counter *= 2;

Back to your roots

What's the Big Theta bound if n is n?

for(int i = 0; i*i < n; ++i) for(int j = 0; j < n; ++j) System.out.println("%");</pre>

Upcoming

Next time...

- Proof techniques (review COMP 2230)
- Asymptotic orders of growth
- Properties of asymptotic bounds

Read 2.1 and 2.2